基于DSP的蓄电池充放电装置原理
1 引言
在蓄电池生产过程中,为了保证产品质量,常需对成品蓄电池进行几次充放电处理。传统充放电设备通常采用晶闸管作为整流逆变功率器件。装置比较复杂,交流输进、输出的功率因数较低。对电网的谐波污染也比较大。为此,设计了一种三相SPWM整流逆变蓄电池充放电装置。它采用IGBT作为功率变换器件。交流侧以精密锁相的正弦波电流实现电能变换。可获接近于1的功率因数,实现对蓄电池的充放电处理,明显降低了对电网的谐波污染,满足了绿色环保和节能的设计要求。
2 系统结构及工作原理
图1示出设计的蓄电池生产用充放电控制系统结构。该系统从原理上可划分为SPWM双向逆变和DC/DC变换充放电两个子系统。前者,在蓄电池充电时,通过三相PFC升压控制实现AC/DC变换。将交流电网电压转换成蓄电池充电所需的直流电压;在蓄电池放电时,通过三相PFC恒压逆变控制实现DC/AC变换,将蓄电池开释的能量回馈电网。后者,完成逆变直流电能与蓄电池电能的转换,以保证蓄电池充放电过程中所要求的电流、电压和时间的控制。各子系统采用单独的DSP治理,DSP部分以模板化直插结构直接插进工控机的主板,工控机承担整个系统的监控治理。系统由1个逆变子系统和n个(实验样机设计为15个)充放电子系统组成。系统工作时,可通过工控机编组,使后路蓄电池工作于充电状态;n-k路工作于放电状态,这样蓄电池能量就可直接在系统内部进行交换,从而明显进步了节能效果。图2示出三相SPWM双向逆变电路采用的典型电压型结构主电路。
三相反馈电流iuf,ivf,iwf用于跟踪由DSP产生的电流给定信号,从而控制直流端电压Ud的稳定;Ud的反馈电压Ut的值经DSP采样后通过电压调节得到作用于电流内环的电流给定值。
图3示出单相PWM整流电路的相量图[2]。固然该系统采用的是三相PWM整流电路.但其工作原理与单相电路相似,只是从单相扩展到三相。对电路进行SPWM控制,在桥的交流输进端A,B,C可得到三相桥臂的SPWM电压uiu,uiv,uiw。对其各相按图3的相量图进行控制,就可使各相电流iu,iv,iw为正弦波。且与电压同相位,功率因数近似为1。
由此可知,控制uiu的大小和相位δ即可控制电流的大小和流向,从而控制功率的大小和方向。通过对Ud的恒压控制,实现逆变器的功率流向,从而实现能量的自动双向活动。
CTM蓄电池**
3 电压控制器的设计
图4示出AD/DC逆变控制框图。该系统采用电压、电流双闭环控制结构,其电压控制对象为直流量;电流控制对象为交流量。电压外环采用数字算法予以实现;电流内环采用模拟电路予以实现,以确保快速进行电流控制,进步系统工作的可靠性。同时,为了使误差电流与给定相位保持一致。电流调节器采用比例控制。
蓄电池充电时,输出电压Ud低于给定值Ud*,则电压调节器输出正的uc,输进电压Uin经过一个比例因子Ku后得到一个与Uin同相的单位正弦us,uc与us的乘积作为给定电流i*,与Uin同相,控制i跟随i*,则能量就以单位功率因数从电网流向蓄电池。此时,变流器工作在整流状态。蓄电池放电时,Ud高于Ud*,则uc为负值,uc与us相乘得到与Uin反向的给定电流i*,控制i跟随i*,能量就能以单位功率因数从蓄电池流向电网。此时,变流器工作在逆变状态。电压外环产生输进给定电流i*,其幅值表明了功率的大小;符号决定了功率的流向;相位决定了能量传递的功率因数。电流内环使输进电流跟踪给定,从而实现可逆的单位功率因数变换。
系统采用TMS320LF2407A DSP作为主处理器,因其有丰富的外设和较高的运算速度。由此可实现较复杂的控制及高精度的数据处理。在此,通过对PI控制、IP控制和变速积分PI控制三种电压调节器算法的实验得出其优劣,从而选择**适合该系统的控制算法进行电压调节。
(1)PI控制算法和IP控制算法
图5a示出PI调节器结构图。由图可得其传递
比较式(5)和式(6)可见,两种系统的传递函数分母相同,故IP调节器可持有与PI相同的无静差调节和稳定特性,同时因它在传递函数上比PI少一个零点,因此具有比PI更好的高频衰减特性,轻易满足较长采样周期数字调节的稳定性要求,能有效抑制混迭现象。系统实验证实,采用IP调节,调节器参数很轻易整定。可使系统达到稳定、无静差和很小的超调。不过在快速性方面将有损失。
(2)变速积分PI控制算法
在传统的PI算法中,因积分增益Ki为常数,在整个调节过程中,其值不变。但系统对积分的要求是偏差大时,积分作用减弱,否则会产生超调,甚至出现积分饱和;反之则加强,否则不能满足正确性的要求。引进变速积分PI控制算法能使控制性能得以满足。其基本思路是偏差大时,积分累积速度慢,积分作用弱;偏差小时,积分累积速度快,积分作用强。为此,设置系数f[E(k)],它是偏差E(k)的函数,当E(k)增大时,f[E(k)]减小;反之则增大。每次采样后,用f[E(k)]乘E(k),再进行累加。f[E(k)]与E(k)的关系可表示为:
在该系统中,采用简单的变速积分PI控制,取A=32,B=8,当误差大于40时,系统相当于采用纯比例调节,因此响应速度加快;当误差小于40并减小到8的过程中,积分作用开始并逐渐增强,响应过程快速平滑;当误差小于8时,完全引进积分作用,能快速有效地消除静差。该方法可有效抑制系统的超调,同时也可兼顾系统的响应速度。
4 实验结果
利用PI,IP和变速积分PI数字电压调节器的逆变子系统对该设计方案进行了大量实验。结果可见,采用变速积分PI数字电压调节器的综合性能优于前两种算法。图6示出采用PI调节、IP调节,以及变速积分PI调节时用100M-Tektronix TDS220存储示波器获取的一组直流母线电压Ud的实验对比波形。逆变器起动时Ud由150V升至200V。由图6可见。3种调节器在无静差调节方面的性能相同,而IP的上升时间明显大于另外两种算法;在抑制超调及高频噪声诱发振荡方面,变速积分PI法有着明显的上风,PI系统的起动超调超过20V,IP系统的超调不到10V,而变速积分PI系统则无超调。无振荡,能很快进进稳定状态:在抗干扰性能方面,变速积分PI系统也具有同样的特点。
5 结论
先容的逆变器采用了直流母线电压的恒压数字调节,可方便地实现电网能量和蓄电池能量的双向活动,精密锁相的SPWM控制可获得接近于1的功率因数,理论分析和系统实验表明,在DSP控制采样周期即是交流电源周期的交流控制系统中,采用变速积分PI调节更易获得小超调、无振荡、无静差的控制性能指标。该设计系统可携带15路3A蓄电池组(每组12V蓄电池15节串联)进行充放电子系统工作,每路工作由工控机编程独立控制。通过对充电组和放电组的公道配置,可获得明显的节能效果。
CTM蓄电池**生产厂家结构特点
· 凃膏式铅-锡-钙合金厚极板,使用寿命长;
· 添加纳米聚合物优质胶体,电解液分布均匀,不存在酸液分层现象;
· 过量电解液,电池热容量大,热消散能力强,工作温度范围宽;
· 专用负铅膏配方、可解决电池深放电时负极板硫化问题,提高电池的充电接受性能,进而改善电池的充放电循环性能;
维护保养
很多车主都认为蓄电池是一个很简单的东西,平时也不太注意作维护保养,其实在汽车的日常使用中,蓄电池也算得是**的部件之一,马虎不得。
蓄电池的日常使用应注意什么呢?记者特地采访了长青蓄电池有限公司副总经理周永坚及广州市广雄生工贸有限公司总经理徐静雄。周永坚说,蓄电池有启动电池和牵引电池之分,而启动电池又包括免维护电池和“加水”电池。就汽车而言,常用的都是启动电池,因 为它可以使汽车储能,然后瞬间释放,所以说用质量好的启动电池,汽车启动也更为迅速。品牌蓄电池更有保障。
有关蓄电池在使用及保养方面需要注意的一些问题:
1.蓄电池长久不用,它会慢慢自行放电,直至报废。因此,每隔一定时间就应启动一次汽车,给蓄电池充电。另一个办法就是将蓄电池上的两个电极拔下来,需注意的是从电极柱上拔下正、负两根电极线,要先拔下负极线,或卸下负极和汽车底盘的连接。然后再拔去带有正极标志(+)的另一端,蓄电池有一定的使用寿命,到一定的时期就要更换。在更换时同样要遵循上述次序,不过在把电极线接上去时,次序则恰恰相反,先接正极,然后再接负极。
2.当电流表指针显示蓄电量不足时,要及时充电。蓄电池的蓄电量可以在仪表板上反映出来。有时在路途中发现电量不够了,发动机又熄火启动不了,作为临时措施,可以向其他的车辆求助,用它们车辆上的蓄电池来发动车辆,将两个蓄电池的负极和负极相连,正极和正极相连。
3.电解液的密度应按照不同的地区、不同的季节按照标准进行相应的调整。
4.在亏电解液时应补充蒸馏水或专用补液。切忌用饮用纯净水代替。因为纯净水中含有多种微量元素,对蓄电池会造成不良影响。
5.在启动汽车时,不间断地使用启动机会导致蓄电池因过度放电而损坏。正确的使用办法是每次发动车的时间总长不超过5秒,再次启动间隔时间不少于15秒。在多次启动仍不着车的情况下应从电路、点火线圈或油路等其他方面找原因。
6.日常行车时应经常检查蓄电池盖上的小孔是否通气。倘若蓄电池盖小孔被堵,产生的氢气和氧气排不出去,电解液膨胀时,会把蓄电池外壳撑破,影响蓄电池寿命。